The single CH domain of calponin is neither sufficient nor necessary for F-actin binding.
نویسندگان
چکیده
Calponins have been implicated in the regulation of actomyosin interactions in smooth muscle cells, cytoskeletal organisation in nonmuscle cells, and the control of neurite outgrowth. Domains homologous to the amino-terminal region of calponin have been identified in a variety of actin cross-linking proteins and signal transduction molecules, and by inference these 'calponin homology (CH) domains' have been assumed to participate in actin binding. We here report on the actin binding activities of the subdomains of the calponin molecule. All three mammalian isoforms of calponin (basic h1, neutral h2 and acidic) possess a single CH domain at their amino terminus as well as three tandem repeats proximal to the carboxyl terminus. Calponin h2 differs, however, from h1 in lacking a consensus actin-binding motif in the region 142-163, between the CH domain and the tandem repeats, which in h1 calponin can be chemically cross-linked to actin. Despite the absence of this consensus actin-binding motif, recombinant full-length h2 calponin co-sediments in vitro with F-actin, suggesting the presence of another binding site in the molecule. It could be shown that this binding site resides in the C-terminal tandem repeats and not in the CH domain. Thus, constructs of h2 calponin bearing partial or complete deletions of the triple repeated sequences failed to co-localise with actin stress fibres despite the presence of a CH domain. Deletion of the acidic carboxyl terminus, beyond the repeats, increased actin binding, suggesting that the carboxy-terminal tail may modulate actin association. Results obtained from transient transfections of amino- and carboxy-terminal truncations in h1 calponin were consistent with the established location of the actin binding motif outside and carboxy-terminal to the CH domain, and confirm that the presence of a single CH domain alone is neither sufficient nor necessary to mediate actin binding. Instead, the carboxy-terminal tandem repeats of h1 and h2 calponin are shown to harbour a second, independent actin binding motif.
منابع مشابه
The actin binding affinity of the utrophin tandem calponin-homology domain is primarily determined by its N-terminal domain.
The structural determinants of the actin binding function of tandem calponin-homology (CH) domains are poorly understood, particularly the role of individual domains. We determined the actin binding affinity of isolated CH domains from human utrophin and compared them with the affinity of the full-length tandem CH domain. Traditional cosedimentation assays indicate that the C-terminal CH2 domai...
متن کاملExtracellular regulated kinase (ERK) interaction with actin and the calponin homology (CH) domain of actin-binding proteins.
An interaction between extracellular regulated kinase 1 (ERK1) and calponin has previously been reported (Menice, Hulvershorn, Adam, Wang and Morgan (1997) J. Biol. Chem. 272 (40), 25157-25161) and has been suggested to reflect a function of calponin as a signalling molecule. We report in this study that calponin binds to both ERK1 and ERK2 under native conditions as well as in an overlay assay...
متن کاملThe Saccharomyces cerevisiae calponin/transgelin homolog Scp1 functions with fimbrin to regulate stability and organization of the actin cytoskeleton.
Calponins and transgelins are members of a conserved family of actin-associated proteins widely expressed from yeast to humans. Although a role for calponin in muscle cells has been described, the biochemical activities and in vivo functions of nonmuscle calponins and transgelins are largely unknown. Herein, we have used genetic and biochemical analyses to characterize the budding yeast member ...
متن کاملHigh-resolution cryo-EM structure of the F-actin-fimbrin/plastin ABD2 complex.
Many actin binding proteins have a modular architecture, and calponin-homology (CH) domains are one such structurally conserved module found in numerous proteins that interact with F-actin. The manner in which CH-domains bind F-actin has been controversial. Using cryo-EM and a single-particle approach to helical reconstruction, we have generated 12-A-resolution maps of F-actin alone and F-actin...
متن کاملThe N- and C-Terminal Domains Differentially Contribute to the Structure and Function of Dystrophin and Utrophin Tandem Calponin-Homology Domains.
Dystrophin and utrophin are two muscle proteins involved in Duchenne/Becker muscular dystrophy. Both proteins use tandem calponin-homology (CH) domains to bind to F-actin. We probed the role of N-terminal CH1 and C-terminal CH2 domains in the structure and function of dystrophin tandem CH domain and compared with our earlier results on utrophin to understand the unifying principles of how tande...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cell science
دوره 111 ( Pt 13) شماره
صفحات -
تاریخ انتشار 1998